Herramientas personales
En la EC encontrarás artículos autorizados
sobre la fe católica
Miércoles, 8 de abril de 2020

Diferencia entre revisiones de «Astronomía»

De Enciclopedia Católica

Saltar a: navegación, buscar
(Construcción Sideral)
(Astronomía Teórica)
(No se muestran 5 ediciones intermedias del mismo usuario)
Línea 1: Línea 1:
 +
'''(Recuerde que este artículo fue escrito en 1907.)'''
 +
 
==Definición==
 
==Definición==
  
Línea 6: Línea 8:
  
 
==Astronomía Prehistórica==
 
==Astronomía Prehistórica==
 +
 +
Los [[China |chinos]], [[India |indios]], [[Egipto |egipcios]] y [[Babilonia |babilonios]] establecieron temprano sistemas formales de [[conocimiento]] astronómico.  Probablemente para el tercer milenio a.C. ya los chinos estaban familiarizados con el ciclo de diecinueve años (redescubierto en el año 632 a.C. por Metón en [[Atenas]]) por el cual, ya que constaba solo de 235 lunaciones, se armonizaron los años solares y lunares; ellos registraron las apariciones de cometas, observaron los eclipses y emplearon aparatos de medición efectivos.  En el siglo XVII los [[Misiones Católicas |misioneros]] [[Compañía de Jesús |jesuitas]] introdujeron a Pekín los métodos [[Europa |europeos]].  La astronomía [[India |india]] contenía pocos elementos originales.  Le asignó prominencia particular al zodíaco lunar, llamado el ''nakshatras'', o mansiones de la luna, contadas variamente a 27 o 28; y éstas, que probablemente se tomaron prestadas de Caldea, sirvieron mayormente para propósitos [[superstición |supersticiosos]].    Por otro lado, en [[Egipto]] se logró una habilidad técnica considerable y se comenzó a usar un sistema de constelaciones de derivación obscura.   
 +
 +
Entre las naciones de tiempos antiguos, solo los [[Babilonia |babilonios]] lograron sentar las bases de una [[Ciencia y la Iglesia |ciencia]] progresiva.  Por medio de los [[Grecia |griegos]] transmitieron a Occidente la totalidad de su esquema de uranografía, habiendo sido diseñadas sustancialmente nuestras constelaciones familiares en la llanura de Sinar alrededor de 2,800 a.C.  También aquí se dio a conocer el “Saros” en una época remota.  Este es un ciclo de dieciocho años y diez u once días, el cual provee los medios para predecir la recurrencia de los eclipses.  Además, las situaciones cambiantes de los planetas entre las estrellas eran registrados diligentemente y se aseguró una exacta familiaridad con los movimientos del sol y de la luna.  La interpretación que hicieron en 1889 los padres [[Joseph Epping |Epping]] y Strassmaier de una colección de tabletas inscritas conservadas en el Museo Británico iluminó vívidamente los métodos de la astronomía babilónica oficial en el siglo II a.C.  Eran perfectamente eficaces para el propósito principalmente a la vista, que era la preparación de efemérides anuales que anunciaban eventos celestes esperados y rastreaba por adelantado las rutas de los cuerpos celestes. En 1899 el padre Kugler, SJ, hizo un análisis más detallado de los datos tabulados empleados en el cálculo de la casa de la luna, el cual dio a conocer el hecho sorprendente de que los cuatro períodos lunares  —meses sinódicos, siderales, anomalísticos y draconítico— fueron adoptados sustancialmente por Hiparco de sus predecesores caldeos.
  
 
==Astronomía Griega==
 
==Astronomía Griega==
 +
 +
Sin embargo, tan pronto la astrología se convirtió en una [[Ciencia y la Iglesia |ciencia]] característicamente [[Grecia |griega]] sufrió una transformación memorable.  Se comenzó a intentar volver inteligibles las apariencias del [[firmamento |cielo]].  De hecho, estos intentos se vieron obstaculizados en gran medida por la suposición de que el movimiento en el [[espacio]] debe conducirse de manera uniforme en un círculo, alrededor de una Tierra estacionaria; sin embargo, Apolonio de Perga (250-220 a.C.) resolvió el problema ostensiblemente, y su solución, que fue aplicada por Hiparco para explicar los movimientos del sol y de la luna, fue extendida a los planetas por Claudio Ptolomeo.    Esta fue la famosa teoría de excéntricos y epiciclos, que, por el ingenio de su elaboración, se mantuvo firme entre los [[hombre]]s civilizados durante catorce siglos. 
 +
 +
Hiparco, el más grande de los astrónomos antiguos, observó en [[Rodas]] (146-126 a.C.), pero se considera que perteneció a la escuela [[Alejandría |alejandrina]].  Inventó la trigonometría, y construyó un catálogo de 1080 estrellas, incitado, de acuerdo con la afirmación de Plinio, por una explosión estelar temporal en Escorpión (134 a.C.).    Comparando, a medida que avanzaba el trabajo, sus propios resultados con los obtenidos 150 años antes por Timócaris y Aristilo, detectó el lento retroceso entre las estrellas del punto de intersección del ecuador celeste con la eclíptica, que constituye el fenómeno de la precesión de la equinoccios.  El circuito se completa en 25,800 años; de ahí que el año trópico, por el que se regulan las estaciones, es más corto que el año sideral por sólo veintiún minutos, y el equinoccio se desplaza hacia atrás para encontrarse con el sol por la cantidad anual de 50.25 pulgadas. 
 +
 +
La astronomía griega se materializa en el "Almagesto" de Ptolomeo (el nombre es de derivación mixta griega y árabe), compuesto en [[Alejandría]] hacia mediados del siglo II d.C.; se basaba en el principio geométrico.  Se suponía que la esfera estrellada con su contenido girase sobre el globo terrestre fijo una vez en veinticuatro horas,  mientras que el sol, la luna y los cinco planetas, además de compartir el movimiento común, describían órbitas variamente condicionadas alrededor del mismo centro.  El cuerpo de doctrina que inculcó formó parte del caudal de [[conocimiento]] universal hasta el siglo XVI.  El activo y ejemplar [[canónigo |eclesiástico]] [[Nicolás Copérnico]], [[canónigo]] de Frauenburg (1743-1543) emprendió la formidable tarea de demostrar su [[falsedad]] y de reemplazarlo con un sistema correspondiente a las [[verdad]]eras relaciones del mundo.    El tratado en el que lo realizó, titulado "De Revolutione Orbium Coelestium”,  vio la luz sólo cuando su autor estaba en agonía, pero una dedicación al [[Papa]] [[Papa Paulo III |Paulo III]] reservó la protección de la [[Santa Sede]] para las nuevas opiniones filosóficamente subversivas que proponía.  Denunciados como impíos por [[Martín Lutero |Lutero]] y [[Philipp Melanchton |Melanchton]], de hecho, [[Roma]] los recibió favorablemente hasta que las desenfrenadas especulaciones de [[Giordano Bruno]] (1548-1600) y las imprudentes declaraciones de [[Galileo Galilei]] (1564-1642) lanzaron sobre ellas el descrédito [[Teología Dogmática |teológico]].
  
 
==Astronomía Descriptiva==
 
==Astronomía Descriptiva==
 +
 +
Se puede decir que la astronomía descriptiva se originó con la invención del telescopio por Hans Lippershey en 1608.    Su aplicación al escrutinio de los cuerpos celestes, por [[Galileo Galilei |Galileo]] y otros, condujo a la vez a una multitud de descubrimientos sorprendentes.  Los satélites de Júpiter, las fases de Venus, las montañas de la luna, las manchas en el sol, los apéndices únicos de Saturno, todos fueron descubiertos con un pequeño instrumento, parecido a unos gemelos de teatro monoculares, y cada uno a su manera formó una revelación significativa y sorprendente; y la percepción de la composición estelar de la Vía Láctea representó el primer paso en la exploración sideral. 
 +
 +
Johann Kepler (1571-1630) inventó en 1611, y el padre [[Christopher Scheiner |Scheiner]] de Ingolstadt (1575-1650) fue el primero en usar, el telescopio refractor moderno; y el curso de descubrimiento posterior correspondió cercanamente al desarrollo de sus poderes.    Christian Huygens (1629-95) resolvió )1656) el ''ansæ'' de Saturno en un anillo, dividido en dos por [[Giovanni Domenico Cassini]] (1625-1712) en 1675.  Titán, la mayor de las lunas de Saturno, fue detectada por Huygens en 1655, y cuatro miembros adicionales de la [[familia]] cerca de 1684.  Simón Mario (1612) dio a conocer la nébula de Andrómeda, y J. B. Cysato, un [[Compañía de Jesús |jesuita]] [[Suiza |suizo]], la nebulosa de Orión en el 1618; y se reconocieron algunas pocas variables y múltiples estrellas.
  
 
==Astronomía Teórica==
 
==Astronomía Teórica==
 +
 +
Sin embargo, la astronomía teórica superó por mucho los logros prácticos del siglo XVII.  Kepler publicó las dos primeras de las "Tres Leyes" en 1609, la tercera en 1619.  La importancia de estas grandes generalizaciones es:
 +
:* (1) que los planetas describen elipses de las cuales el sol ocupa uno de los focos;
 +
:* (2) que la línea recta que une cada planeta con el sol (su radio vector) barre áreas iguales en tiempos iguales;
 +
:* (3) que los cuadrados de los períodos planetarios son separadamente proporcionales a los cubos de su distancia media del sol.
 +
 +
El plan geométrico de movimiento en el sistema solar fue así establecido con maravillosa [[intuición]] . Pero se reservó para Sir Isaac Newton (1643-1727) la exposición de su importancia al demostrar que la misma fuerza que actúa uniformemente regula las revoluciones celestes, y obliga a los cuerpos pesados a caer hacia la superficie de la tierra.  La ley de gravedad, publicada en 1687 en "Philosophiæ Naturalis Principia Mathematica" es al siguiente efecto: cada partícula de materia atrae a todas las demás con una fuerza directamente proporcional a sus masas e inversamente proporcional al cuadrado de sus distancias de separación.  Su validez se ensayó mediante la comparación de la cantidad de deflexión orbital de la luna en un segundo con la deflexión orbital en un segundo con la velocidad a la que una manzana cae en un huerto. 
 +
 +
Haciendo provisión para la distancia de la Luna, las dos velocidades [[prueba |probaron]] corresponder perfectamente, y se estableció definitivamente la identidad de la gravedad terrestre con la fuerza que controla las revoluciones de los cuerpos celestes.  Pero esto fue sólo el principio.  Quedaba por realizarse la colosal obra de calcular las consecuencias de la [[ley]], en los pequeños detalles de su funcionamiento y de su comparación con los [[firmamento |cielos]]. El propio Newton la llevó adelante por primera vez y en el siglo siguiente Euler, Clairaut, d'Alembert, Lagrange y [[Pierre-Simon Laplace |Laplace]].    [[Urbain-Jean-Joseph Le Verrier |Urbain Le Verrier]] (1811- 77) heredó de estos [[hombre]]s de genio una tarea que parecía nunca se completaría;  y las investigaciones de  Adams, John Gough (1819-1892), de Hansen y Delaunay, de Profesores Hill y Newcomb, y muchos más han demostrado que las complejidades de la teoría lunar  están cargada de temas de [[interés]] inesperado y variado.
  
 
==Descubrimientos en el Sistema Solar==
 
==Descubrimientos en el Sistema Solar==

Revisión de 19:56 25 mar 2020

(Recuerde que este artículo fue escrito en 1907.)

Definición

La astronomía (del griego astron, estrella; nemein, distribuir) es una ciencia de antigüedad prehistórica, que se originó en las necesidades elementales de la humanidad. Se divide en dos ramas principales, que se distinguen como la “astrometría” y la astrofísica; la primera se ocupa de determinar los lugares de los cuerpos celestes; la segunda, de la investigación de su naturaleza química y física; pero la división es de una fecha bastante reciente (a 1907). Las posibilidades de la vieja ciencia no pudieron fijar las posiciones aparentes de los objetos en la esfera. Tampoco se hizo ningún intento de racionalizar los hechos observados hasta que los griegos construyeron laboriosamente un sistema especulativo, que finalmente fue desplazado por el amplio tejido de la teoría gravitacional.

Mientras tanto la astronomía descriptiva tuvo su origen a partir de la invención del telescopio y las facilidades así provistas para el escrutinio cercano de los habitantes del cielo; mientras que la astronomía práctica ganó continuamente en el refinamiento con la mejora de las artes mecánicas y ópticas. Al presente (1907), se puede decir que la astrofísica ha absorbido a la astronomía descriptiva, y la astrometría necesariamente incluye la investigación práctica. Pero la astronomía matemática basada en la ley de gravedad mantiene su lugar aparte, aunque, para el perfeccionamiento de sus teorías y la ampliación de su ámbito, depende de los avances en las antiguas direcciones y exploraciones en las nuevas.

Astronomía Prehistórica

Los chinos, indios, egipcios y babilonios establecieron temprano sistemas formales de conocimiento astronómico. Probablemente para el tercer milenio a.C. ya los chinos estaban familiarizados con el ciclo de diecinueve años (redescubierto en el año 632 a.C. por Metón en Atenas) por el cual, ya que constaba solo de 235 lunaciones, se armonizaron los años solares y lunares; ellos registraron las apariciones de cometas, observaron los eclipses y emplearon aparatos de medición efectivos. En el siglo XVII los misioneros jesuitas introdujeron a Pekín los métodos europeos. La astronomía india contenía pocos elementos originales. Le asignó prominencia particular al zodíaco lunar, llamado el nakshatras, o mansiones de la luna, contadas variamente a 27 o 28; y éstas, que probablemente se tomaron prestadas de Caldea, sirvieron mayormente para propósitos supersticiosos. Por otro lado, en Egipto se logró una habilidad técnica considerable y se comenzó a usar un sistema de constelaciones de derivación obscura.

Entre las naciones de tiempos antiguos, solo los babilonios lograron sentar las bases de una ciencia progresiva. Por medio de los griegos transmitieron a Occidente la totalidad de su esquema de uranografía, habiendo sido diseñadas sustancialmente nuestras constelaciones familiares en la llanura de Sinar alrededor de 2,800 a.C. También aquí se dio a conocer el “Saros” en una época remota. Este es un ciclo de dieciocho años y diez u once días, el cual provee los medios para predecir la recurrencia de los eclipses. Además, las situaciones cambiantes de los planetas entre las estrellas eran registrados diligentemente y se aseguró una exacta familiaridad con los movimientos del sol y de la luna. La interpretación que hicieron en 1889 los padres Epping y Strassmaier de una colección de tabletas inscritas conservadas en el Museo Británico iluminó vívidamente los métodos de la astronomía babilónica oficial en el siglo II a.C. Eran perfectamente eficaces para el propósito principalmente a la vista, que era la preparación de efemérides anuales que anunciaban eventos celestes esperados y rastreaba por adelantado las rutas de los cuerpos celestes. En 1899 el padre Kugler, SJ, hizo un análisis más detallado de los datos tabulados empleados en el cálculo de la casa de la luna, el cual dio a conocer el hecho sorprendente de que los cuatro períodos lunares —meses sinódicos, siderales, anomalísticos y draconítico— fueron adoptados sustancialmente por Hiparco de sus predecesores caldeos.

Astronomía Griega

Sin embargo, tan pronto la astrología se convirtió en una ciencia característicamente griega sufrió una transformación memorable. Se comenzó a intentar volver inteligibles las apariencias del cielo. De hecho, estos intentos se vieron obstaculizados en gran medida por la suposición de que el movimiento en el espacio debe conducirse de manera uniforme en un círculo, alrededor de una Tierra estacionaria; sin embargo, Apolonio de Perga (250-220 a.C.) resolvió el problema ostensiblemente, y su solución, que fue aplicada por Hiparco para explicar los movimientos del sol y de la luna, fue extendida a los planetas por Claudio Ptolomeo. Esta fue la famosa teoría de excéntricos y epiciclos, que, por el ingenio de su elaboración, se mantuvo firme entre los hombres civilizados durante catorce siglos.

Hiparco, el más grande de los astrónomos antiguos, observó en Rodas (146-126 a.C.), pero se considera que perteneció a la escuela alejandrina. Inventó la trigonometría, y construyó un catálogo de 1080 estrellas, incitado, de acuerdo con la afirmación de Plinio, por una explosión estelar temporal en Escorpión (134 a.C.). Comparando, a medida que avanzaba el trabajo, sus propios resultados con los obtenidos 150 años antes por Timócaris y Aristilo, detectó el lento retroceso entre las estrellas del punto de intersección del ecuador celeste con la eclíptica, que constituye el fenómeno de la precesión de la equinoccios. El circuito se completa en 25,800 años; de ahí que el año trópico, por el que se regulan las estaciones, es más corto que el año sideral por sólo veintiún minutos, y el equinoccio se desplaza hacia atrás para encontrarse con el sol por la cantidad anual de 50.25 pulgadas.

La astronomía griega se materializa en el "Almagesto" de Ptolomeo (el nombre es de derivación mixta griega y árabe), compuesto en Alejandría hacia mediados del siglo II d.C.; se basaba en el principio geométrico. Se suponía que la esfera estrellada con su contenido girase sobre el globo terrestre fijo una vez en veinticuatro horas, mientras que el sol, la luna y los cinco planetas, además de compartir el movimiento común, describían órbitas variamente condicionadas alrededor del mismo centro. El cuerpo de doctrina que inculcó formó parte del caudal de conocimiento universal hasta el siglo XVI. El activo y ejemplar eclesiástico Nicolás Copérnico, canónigo de Frauenburg (1743-1543) emprendió la formidable tarea de demostrar su falsedad y de reemplazarlo con un sistema correspondiente a las verdaderas relaciones del mundo. El tratado en el que lo realizó, titulado "De Revolutione Orbium Coelestium”, vio la luz sólo cuando su autor estaba en agonía, pero una dedicación al Papa Paulo III reservó la protección de la Santa Sede para las nuevas opiniones filosóficamente subversivas que proponía. Denunciados como impíos por Lutero y Melanchton, de hecho, Roma los recibió favorablemente hasta que las desenfrenadas especulaciones de Giordano Bruno (1548-1600) y las imprudentes declaraciones de Galileo Galilei (1564-1642) lanzaron sobre ellas el descrédito teológico.

Astronomía Descriptiva

Se puede decir que la astronomía descriptiva se originó con la invención del telescopio por Hans Lippershey en 1608. Su aplicación al escrutinio de los cuerpos celestes, por Galileo y otros, condujo a la vez a una multitud de descubrimientos sorprendentes. Los satélites de Júpiter, las fases de Venus, las montañas de la luna, las manchas en el sol, los apéndices únicos de Saturno, todos fueron descubiertos con un pequeño instrumento, parecido a unos gemelos de teatro monoculares, y cada uno a su manera formó una revelación significativa y sorprendente; y la percepción de la composición estelar de la Vía Láctea representó el primer paso en la exploración sideral.

Johann Kepler (1571-1630) inventó en 1611, y el padre Scheiner de Ingolstadt (1575-1650) fue el primero en usar, el telescopio refractor moderno; y el curso de descubrimiento posterior correspondió cercanamente al desarrollo de sus poderes. Christian Huygens (1629-95) resolvió )1656) el ansæ de Saturno en un anillo, dividido en dos por Giovanni Domenico Cassini (1625-1712) en 1675. Titán, la mayor de las lunas de Saturno, fue detectada por Huygens en 1655, y cuatro miembros adicionales de la familia cerca de 1684. Simón Mario (1612) dio a conocer la nébula de Andrómeda, y J. B. Cysato, un jesuita suizo, la nebulosa de Orión en el 1618; y se reconocieron algunas pocas variables y múltiples estrellas.

Astronomía Teórica

Sin embargo, la astronomía teórica superó por mucho los logros prácticos del siglo XVII. Kepler publicó las dos primeras de las "Tres Leyes" en 1609, la tercera en 1619. La importancia de estas grandes generalizaciones es:

  • (1) que los planetas describen elipses de las cuales el sol ocupa uno de los focos;
  • (2) que la línea recta que une cada planeta con el sol (su radio vector) barre áreas iguales en tiempos iguales;
  • (3) que los cuadrados de los períodos planetarios son separadamente proporcionales a los cubos de su distancia media del sol.

El plan geométrico de movimiento en el sistema solar fue así establecido con maravillosa intuición . Pero se reservó para Sir Isaac Newton (1643-1727) la exposición de su importancia al demostrar que la misma fuerza que actúa uniformemente regula las revoluciones celestes, y obliga a los cuerpos pesados a caer hacia la superficie de la tierra. La ley de gravedad, publicada en 1687 en "Philosophiæ Naturalis Principia Mathematica" es al siguiente efecto: cada partícula de materia atrae a todas las demás con una fuerza directamente proporcional a sus masas e inversamente proporcional al cuadrado de sus distancias de separación. Su validez se ensayó mediante la comparación de la cantidad de deflexión orbital de la luna en un segundo con la deflexión orbital en un segundo con la velocidad a la que una manzana cae en un huerto.

Haciendo provisión para la distancia de la Luna, las dos velocidades probaron corresponder perfectamente, y se estableció definitivamente la identidad de la gravedad terrestre con la fuerza que controla las revoluciones de los cuerpos celestes. Pero esto fue sólo el principio. Quedaba por realizarse la colosal obra de calcular las consecuencias de la ley, en los pequeños detalles de su funcionamiento y de su comparación con los cielos. El propio Newton la llevó adelante por primera vez y en el siglo siguiente Euler, Clairaut, d'Alembert, Lagrange y Laplace. Urbain Le Verrier (1811- 77) heredó de estos hombres de genio una tarea que parecía nunca se completaría; y las investigaciones de Adams, John Gough (1819-1892), de Hansen y Delaunay, de Profesores Hill y Newcomb, y muchos más han demostrado que las complejidades de la teoría lunar están cargada de temas de interés inesperado y variado.

Descubrimientos en el Sistema Solar

Cometas y Meteoros

Astronomía Sideral

Distancias del Sol y las Estrellas

Fotografía Celestial

Astrofísica

Construcción Sideral

Bibliografía: NEWCOMB, Popular Astronomy (Londres, 1883); YOUNG, General Astronomy (Boston, 1898); YOUNG, Manual of Astronomy (Boston, 1902); BALL, The Story of the Heavens (Londres, 1900); GRANT, History of Physical Astronomy (Londres, 1852); CLERKE, Hist. of Astr. During the 19th Century (Londres, 1903); BERNY, Hist. of Astronomy (Londres, 1898); DREYER, Hist. of the Planetary Systems (Londres, 1906); EPPING Y STRASSMAIER, Astronomisches aus Babylon (Friburgo, 1889); KUGLER, Die babylonische Mondrechnung (Friburgo, 1900); TANNENY, recherches sur l´hist. de l´astr. Ancienne (París, 1893); JENSEN, Kosmologie der Babylonier (Estrasburgo, 1890); YOUNG, The Sun (Nueva York, 1897); NEWCOMB, The Stars (Londres, 1901); CLERKE, The System of the Stars (Londres, 1905); CLERKE, Problems in Astrophysics (Londres, 1903); PICKERING, The Moon (Nueva York, 1903); NASMYGH Y CARPENTER, The Moon (Londres, 1903); SCHEINER (Die Speciralanalyse der Gestirne (Leipzig, 1890, tr. Boston, 1894); SCHEINER, Die Photometrie der Gestirne (Leipzig, 1897); SECCHI, Le soleil (París, 1875-77); MOREUX, Le probleme solaire (París, 1900); TURNEN, Modern Astronomy (Londres, 1901); MOULTON, An Introduction to Astronomy (Nueva York, 1906).

Fuente: Clerke, Agnes. "Astronomy." The Catholic Encyclopedia. Vol. 2, págs. 25-29. New York: Robert Appleton Company, 1907. 23 Mar. 2020 <http://www.newadvent.org/cathen/02025a.htm>.

Está siendo traducido por Luz María Hernández Medina